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 This paper revisits the logic of pursuing parallel R&D 
paths when there is uncertainty as to which approaches will 
succeed technically and/or economically.  Previous findings by 
Richard Nelson and the present author are reviewed.  A further 
analysis then seeks to determine how sensitive optimal 
strategies are to parameter variations and the extent to which 
parallel and series strategies are integrated.  It pays to 
support more approaches, the deeper the stream of benefits is 
and the lower is the probability of success with a single 
approach.  Higher profits are obtained with combinations of 
parallel and series strategies, but the differences are small 
when the number of series trial periods is extended from two to 
larger numbers.  A "dartboard experiment" shows that when 
uncertainty pertains mainly to outcome values and the 
distribution of values is skew-distributed, the optimal number 
of trials is inversely related to the cost per trial. 
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 PARALLEL R&D PATHS REVISITED 
 
 F. M. Scherer 
 June 2011 Revision 
 
 
 1.  Introduction 
 
 This paper revisits the role pursuing parallel paths -- 
i.e., supporting simultaneously a diversity of experiments or 
product designs to hedge against uncertainties in securing a 
desired technological result -- plays in research and 
development strategy.  Some of the more novel points advanced 
here come from my early publications and from unpublished 
lectures in a course on the economics of technological 
innovation and economic growth, taught repeatedly between 1982 
and 2009.  Some are newer, worked out to fill lacunae I had left 
in past treatments. 
 
 My introduction to the parallel paths strategy came in 
joint research with M. J. Peck on advanced weapons research and 
development.  In our (1962) book, Peck and I proposed, expanding 
upon a suggestion we heard first at Bell Telephone Laboratories, 
that the scheduling an R&D project entailed a tradeoff between 
speed of development and cost.  Figure 1 reproduces our diagram 
introducing the basic concept.  One could accelerate the 
expected completion date of a development project, but (within 
efficient tradeoff curve segment NR) only by incurring higher 
cost.  Time could be saved by assigning more talent to the 
effort, but only subject to diminishing marginal returns; by 
overlapping tests before the first step has yielded all the 
information useful in a later step; and through hedging against 
uncertainty by supporting parallel research or development 
approaches.  The essence of the parallel paths strategy was 
(Peck and Scherer, 1962), p. 261: 
 

 ... operating simultaneously two or more approaches to 
the step, test, or problem to insure that at least one 
approach will hit the mark at the earliest possible moment. 

 
We proposed a crude calculus-based solution to the time-cost 
tradeoff problem, finding an optimum where the (negative) slope 
of the convex time-cost tradeoff function was equal to the time 
derivative of a function measuring the expected military value 
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from successful completion of the research and development 
project.  The more valuable the completed weapon system, the 
more rapidly it should be developed, among other things through 
the use of parallel paths. 
 
 There is no systematic evidence on how widely parallel 
paths strategies are used, but there is reason to believe the 
best-known cases are not atypical.  Thomas Edison is said to 
have tested 1,600 materials for his electric lamp filaments 
before focusing on a carbonized design.  In 1934 DuPont 
synthesized 81 different polyamide compounds in its quest for 
what eventually became nylon. Five were carried into further 
experiments.1  A pioneer in science-guided rational drug design 
explored 367 different molecules before finding one with good 
prospects for suppressing the human body's rejection of 
artificial organ transplants.2  Peck and I observed that the 
military authorities authorized parallel paths, sometimes in 
head-to-head competitions and sometimes more informally, in 
their quest to develop new fighters, bombers, and guided 
missiles.  More recently, several design-stage alternatives were 
supported, and two full-scale prototypes were built for 
competitive evaluation during the 1990s, as precursors to what 
eventually became the F-22 "Raptor" advanced tactical fighter 
and the F-35 joint strike fighter.  In perhaps the most famous 
case of all, U.S. defense authorities initially supported five 
different approaches to the problem of producing fissionable 
material for an atomic bomb, each expected in May 1942 to cost 
approximately $100 million, and four were sustained into 
production during the atomic bomb development effort.3  And two 
different bomb designs --a gun-barrel design using uranium and 
an implosion device using plutonium --  were supported to the 

                                                 
1     .  Hounshell and Smith (1986), p. 259. 
 
2     .  Werth (1994), p. 251. 
 
3     .  See e.g. Hewlett and Anderson (1962, vol. I); and Rhodes (1986).  Hitch and McKean 
(1960, p. 249) write that "... the method that succeeded in producing the material for the first 
bomb was regarded at first as among the least promising..."   They do not identify the successful 
method or pinpoint the timing.  In fact, the five methods' perceived prospects changed ranks 
several times between 1940 and 1943.  In December 1941, the best alternatives were considered 
to be gaseous diffusion, which was combined with electromagnetic separation to produce 
material for the Hiroshima bomb, and centrifugal separation, which proved intractable and whose 
production plant authorization was cancelled in November 1942.  It later became low-income 
nations' preferred method. 
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end of the War and afterward, the former exploded over Hiroshima 
and the latter at Nagasaki. 
 
 After completing my work with Peck, I sought to extend 
insights from the time-cost tradeoff concept, initially making 
my mathematical treatment more general and more rigorous in the 
context of government-supported R&D (Scherer, 1965) and then 
building models showing how and when competition accelerated the 
pace of innovation in the civilian sector (Scherer, 1967).   
 
 The time-cost tradeoff approach was not without critics.  
At an informal meeting in the early 1960s, General Bernard 
Schriever, head of the U.S. Air Force's ballistic missile 
development program, insisted that there was no tradeoff:  the 
quickest approach was also the least expensive.  His implicit 
emphasis was on what we called the overhead effect, 
characterized by segment MN in Figure 1.  There were also 
rumblings of skepticism from another important West Coast 
institution, the RAND Corporation.  After my early work on time-
cost tradeoffs was completed, economist Thomas Marschak 
published (1967) a rich set of what might be called 
impossibility theorems suggesting that parallel paths strategies 
could lead to an inverse convex relationship between development 
time and cost, but that important exceptions could also exist.4 
 
 2.  Richard Nelson's Contribution 
 
 A more focused and widely-disseminated contribution came 
from Richard R. Nelson (1961), who had been a colleague of 
Marschak at RAND. Nelson emphasized the beneficial role of 
parallel approaches in the face of R&D uncertainties, concluding 
(p. 363) that "we should be wary in damning the wastefulness of 
independent and competitive efforts" and more generally that 
"the number of alternative inventors ... should be greater, the 
greater the demand for the invention." 
 
 Nelson motivates his more general model with a simple 
numerical illustration.  The objective is to develop a 
successful new fighter aircraft.  At the outset, it is uncertain 
which of various alternative designs is likely to be successful.  
A prediction of future success is obtained by building and test-
flying one or more prototypes embodying proposed designs.  Each 

                                                 
4     .  For later, more specific, modelling approaches, see Abernathy and Rosenbloom (1968) and 
(1969). 
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prototype effort costs $10 million (an astounding but plausible 
number, compared to present-day fighter aircraft development 
program costs in the billions of dollars!) and takes 20 months.  
Prototype tests can reveal any given design to be a more 
desirable Type I, with an expected further development cost to 
successful completion of $50 million over an additional time 
span of 20 months, or a less desirable Type II, for which the 
additional development effort is expected to cost $100 million 
and take 50 additional months.  The a priori probability of a 
Type I outcome is 0.40 and for Type II 0.60.  If only one design 
proves after prototype tests to be of Type I, it is carried into 
final development.  If parallel prototype paths are pursued and 
more than one design proves to be a Type I, one of the successes 
is chosen randomly for further development.  If none is a Type 
I, one of the Type II prototypes is selected randomly for high-
cost final development. 
 
 Weighting outcomes by probabilities, Nelson computes the 
expected values of total development cost and time for 
alternative strategies -- supporting only a single first-stage 
prototype, chosen at random, or pursuing from two to five 
parallel prototype development paths.  The outcomes, given his 
assumptions, are shown in Figure 2.  Authorizing a single 
prototype leads to an expected total cost of $90 million and a 
probability-weighted time to completion of 58 months; with two 
approaches in parallel, development is not only faster -- 50.8 
months -- but less expensive ($88 million).  Choosing between 
one and two paths, there is no tradeoff:  the two-path strategy 
is dominant.  For the specific values chosen, a partial counter-
example to my assumption of tradeoff curve convexity is 
demonstrated.  Nelson's initially articulated criterion is 
"achieving a given objective at minimum cost," so it would 
appear that the two-path strategy is optimal.  However, he 
recognizes that delay can also be costly.  For strategies 
involving more than two parallel paths, time is reduced, but 
only at higher expected cost.  A tradeoff materializes.  
Assuming (p. 360) that a month's delay in effect costs $1 
million (i.e., that the Air Force is willing to spend an extra 
$1 million for each month saved), he finds the least-cost 
strategy to be pursuing three parallel paths. 
 
 Nelson's pioneering analysis makes a compelling case for 
the potential attractiveness of parallel R&D paths strategies.  
There are, however, two noteworthy problems.   
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 First, his "cost of delay" or (in footnote 14) indifference 
curve relating delay cost to time5 overlooks a rather general 
point.  R&D is normally an investment made for the purpose of 
securing future benefits, which, as in most investment problems, 
accrue over a period of time.  When the project is completed, 
one taps into a stream of benefits.  What one loses by taking 
longer to complete one's development is the benefit from that 
stream during the period of delay.  As Peck and I formulated 
crudely (smoothing unique and short-duration but uncertain 
combat needs with the probability of a combat situation) and I 
proposed more rigorously in 1965, the problem of optimal 
development timing consists of maximizing the difference between 
discounted benefits and R&D costs, i.e., 
 
           H 
(1)   Max  ∫ v(t) e-rt dt - C(T); 
           T 
 
where v(t) is the depth of the benefits stream at time t, r is a 
conventional time discount rate (or in business problems, the 
so-called "hurdle rate"), C(T) is a convex inverse function 
relating development cost to the expected time for development 
completion, T is the time when the development is completed and 
benefits begin flowing in, and H is the decision-maker's time 
horizon.  To be sure, erratic benefit stream configurations 
might require the single-valued time cost assumption of Nelson 
and Marschak, but equation (1) is more general and more 
consistent with the accepted literature on capital investment. 
 
 Second, Nelson's analysis compares only options entailing 
multiple but simultaneous prototype paths against the one-path 
alternative.  He ignores alternative series scheduling 
strategies.  Given his assumptions, a series strategy would 
build and test one prototype, determine at the end of 20 months 
whether it is a Type I or Type II, commence full-scale 
development if it is a Type I, and (here is the difference) shut 
down the first project and begin a second prototype project if 
the first prototype is found to be a Type II.  The same decision 
rule could be followed when test results are obtained from the 
second prototype, and so on for as many iterations in series as 
one wishes to entertain.  Where 0.6 is the probability of a Type 
II outcome for a single prototype and 0.4 the probability of a 

                                                 
5     .  See also Marschak (1967), pp. 207-210, who views delay as a cost and postulates 
indifference curves to resolve tradeoffs. 
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Type I outcome, the expected cost of completion for a three-
stage series strategy (with full-scale development proceeding 
regardless of the third-stage results, if it is reached) is: 
 
(2)  E(T) = $10 million + (0.4)x $50 million [1st stage success]  
            + (0.6 x $10 million) [2nd prototype after failure] 
        + (0.6 x 0.4) x $50 million [2nd stage success) 
    + (0.62 x $10 million) [3rd proto. after 2nd failure] 
            + (0.62 x 0.4) x $50 million [3rd stage success] 
    + (0.63 x $100) million [3rd stage failure] 
 
   =   $80.4 million. 
 
By a similar probability-weighted calculation, one finds that 
the expected time to completion with a three-stage strategy is 
65.7 months.  Although the expected time to completion is 
longer, the expected cost with the three-stage series strategy 
is lower than with any of the parallel paths strategies.  The 
tradeoff is restored. 
 
 Figure 3 adds to Figure 2 three series time-cost tradeoff 
outcomes, for two-stage, four-stage, and six-stage strategies.  
Again, one sees that the tradeoff is restored, the only anomaly 
being the higher cost with a one-stage strategy than with two 
parallel paths.  Whether one would choose to use a series 
strategy instead of a parallel paths strategy depends upon the 
depth of the benefits stream tapped when the R&D project is 
successful.  The deeper the benefits stream, the more the 
optimum moves to the northwest into multiple parallel paths.  
For shallow expected benefits streams, series scheduling could 
be optimal.  Small-scale research in a university setting 
characteristically emphasizes the series approach.  However, for 
important problems -- those whose solution will tap deep 
benefits streams -- multiple investigators are likely to be 
working in parallel, quite possibly competitively.  Thus, real-
world behavior --to be sure, not necessarily optimal -- may 
combine series and parallel strategies.  See Scherer (2010), pp. 
568-569. 
 
 3.  An Intermediate Step 
 
 To set the stage for my work on how rivalry in the private 
sector affects the speed of innovation, I considered it 
essential first to reaffirm that there was indeed a tradeoff 
between development time and cost, especially in the context of 
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parallel path vs. series strategies under uncertainty.  Several 
approaches to the problem were analyzed and published in my 
(1966) paper.6  That paper verified a robust time-cost tradeoff 
under uncertainty.  Having resolved that question to my 
satisfaction, essentially at the sub-optimizing research 
strategy level, I was able to simplify my analysis of optimal 
R&D strategies under rivalry by assuming the time-cost tradeoff 
function to be deterministic.  The paper established several 
propositions, summarized as follows: 
 
 (1)  When each alternative research project has the same 
probability of success and the same cost, and when, for a series 
strategy, equal numbers of projects are scheduled per time 
period, a convex time-cost tradeoff function exists.  
 
 (2)  Under the assumptions of (1), the equal projects per 
time period strategy was not optimal, although the time-cost 
tradeoff continued to exist.  Rather, costs were reduced, all 
else equal, by scheduling relatively few projects in the first 
period and then increasing the number of projects progressively 
in later periods. In a dynamic programming example with an equal 
individual project success probability of 0.05 and a cumulative 
success probability target of 0.95, the optimal number of 
projects in six successive periods was 6, 7, 8, 10, 12, and 17.  
However, costs were not highly sensitive to modest deviations 
from this optimal pattern. 
 
 (3)  When individual project success probabilities and/or 
costs differ, one schedules first in a parallel-series strategy 
the projects with the highest success probabilities.  The 
negative time-cost tradeoff persists.  Letting project costs 
differ too complicated the analysis beyond the bounds of known 
computational feasibility. 
 
 (4)  When completing one or more projects generates 
information that increases the success prospects of subsequent 
projects, the case for series scheduling is strengthened without 
eliminating the existence of a time-cost tradeoff. 
 
 (5)  Simultaneous cross-project learning (cross 
fertilization) or other scope economies strengthens the case for 
parallel paths and might reverse the time-cost tradeoff for 

                                                 
6     .  Material inadvertently omitted from the original version was published in the September 
1966 edition of the same journal. 
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excessively serial strategies. 
 
 (6)  All of the above analyses assumed that successful 
trials are near-perfect substitutes of approximately equal 
utility, so in a series strategy, testing ceases when one 
success has been achieved.  When outcomes are differentiated so 
that additional outcomes have value, the case for series 
scheduling is weakened but not eliminated and the case for 
parallel scheduling is strengthened.  We return to this piece of 
unfinished business in a later section. 
 
 4. Finding the Global Optimum 
 
 All of these analyses were focused narrowly on testing, and 
in most cases supporting, the existence of a negatively sloped 
time-cost tradeoff function under significant uncertainty.  Once 
that function is established, the problem remains of finding the 
time-cost combination that maximizes the expected surplus of 
benefits over R&D costs.  A simple but fairly general analysis 
affirmed that the deeper the stream of benefits tapped following 
successful R&D project completion, the more one optimally 
emphasized saving time over saving cost.  To achieve insight 
into how sensitive net profits were to the pursuit of parallel 
and series strategies, a quantitative analysis of diverse 
success probability, benefit stream depths, and scheduling 
strategies was conducted.  Where t was a running time variable, 
bt was the dollar value of the benefits realizable in the tth 
time period contingent upon success, M was the cost per research 
approach, q was the probability that any given approach would 
fail (like M, assumed constant), N was the number of approaches 
originally scheduled (subject to reduction if an early success 
emerged), and r was the discount rate, the objective was to 
maximize net expected present value V, defined as: 
 
          T 
(3)  V =  ∑ [1 - qN(t-1)/T] [1 / (1+r)] bt        
         t=2 
 
            H    
  + ∑ [1 - qN] [1 / (1+r)t] bt 
          t=T+1 
 
            T  
      - ∑ [qN(t-1)/T] [1 / (1+r)t-1] (NM/T) 
           t=1 
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with respect to N and T.  The first term is the benefits 
received contingent upon early success in the planned 
experimentation period, the second the benefits after completed 
experimentation has (with some probability) yielded success, and 
the third the discounted present value of R&D costs. 
 
 Figure 4 reproduces the main results of the numerical 
search for optimal solutions, where each experiment is conducted 
within a single year, the cost per experiment is $1,000, 
potential benefits are measured in thousands of dollars per 
year, they continue out to year 25, and the time discount rate r 
is 0.06.7  Verifying prior insights, one found that the optimal 
number of independent research projects increases monotonically 
with the depth of the benefits stream bt.  The article reported 
that V was relatively insensitive to the diverse combinations of 
N (the total number of planned experiments, if early success 
were not achieved) and T (the number of periods over which 
experimentation might continue).  In other words, getting the 
total number of scheduled experiments right was much more 
important than the way they were scheduled over time.  But 
getting N/T right was important, as Figure 4 shows.  Finally, 
changes in the net benefit-maximizing N/T were more sensitive to 
the depth of the benefit stream, the lower the probability of 
success in a single experiment was -- i.e., the greater the 
uncertainty. 
 
 As I reconsidered the relevance of these results to an 
analysis of uncertainty-hedging in pharmaceutical R&D,8 I 
realized that one needed to know more about the relationship 
between N and T, that is, on the extent of reliance upon series 
as compared to parallel scheduling of individual projects.  I 
have extended the analysis for a plausible array of scheduling 
assumptions.  The computations were done mainly for the case in 
which scheduling was expected to be most sensitive to 
differences in benefit stream depths, i.e., with a low 0.01 
probability of success.  This is akin to conditions in pre-
clinical animal model tests to discover therapeutically 
interesting pharmaceutical molecules before testing in humans 
begins.  Profit-maximizing solutions were found by inspection 

                                                 
7     .  Benefits were assumed to begin flowing in at the earliest in year 2 and to be discounted at 
the end of the year in which they were realized. 
 
8     .  Scherer (2010). 
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from profit vectors for alternative numbers of trials per 
period, given differing benefit stream depths (a relatively easy 
task in the era of spreadsheets).  For the series strategies, 
the number of trials scheduled per period was equal, contrary to 
insight (2) from my 1966 tradeoff paper. 
 
 Figure 5 shows that the discounted profit-maximizing number 
of trials scheduled per period (N/T) differs widely, depending 
upon whether all tests are scheduled for the first period as 
compared to being spread conditionally over two, three, or four 
successive periods.  When everything is done in the first 
period, by far the largest number of trials in a period is 
scheduled.  The more periods over which the trials are spread, 
the smaller is the profit-maximizing number of trials per period 
-- in the hope that an early success will alleviate the need for 
later trials.9  The optimal total number of projected trials 
increases two-to-threefold, however, as one moves from a one-
stage to a four-stage strategy.  If one is unlucky and no 
success is achieved in early stages, the larger number of trials 
will cost more than does the single-stage strategy.  But that 
multi-stage cost is reduced by the probability that success will 
be achieved earlier and the later trials will be unnecessary. 
 
 Figure 6 tests for the sensitivity of total discounted 
profits, i.e., expected benefits minus expected R&D costs, to 
alternative series scheduling strategies.  Spreading trials, 
whose number is optimized for the series strategy chosen, over 
two periods is substantially more profitable in the net than 
running all trials simultaneously in the first period.  This is 
so even in the absence of learning from unsuccessful tests, as 
assumed throughout this computation.  However, profits are not 
very sensitive to moving from two to three or four trial 
periods.  Thus, a bit of series scheduling appears to be a good 
thing, but diminishing returns set in rapidly. 
 
 To be sure, a disadvantage of spreading any given number of 
trials (actually variable among series alternatives in the 
Figure 6 computation) over more periods is a longer expected 
period of development.  For bt = 25, the expected development 
time, given the profit-maximizing choice of trial numbers, 
varies with the number of periods over which the trials are 

                                                 
9     .  The curves are discontinuous below bt of 10, since no parallel or series strategies yielded 
positive net profits for benefits of $7,500 per year -- the next lowest value for which optima were 
calculated -- or less. 
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spread (i.e., with increasing recourse to series scheduling) as 
follows: 
 
          E(T) 
 
 All in first period   1.00 years 
 Two periods    1.42 years 
 Three periods    1.70 years 
 Four periods    1.92 years 
 
Since series scheduling tends to be less costly, all else equal, 
this implies again the existence of a time-cost tradeoff.  In 
the computation conducted, this tradeoff is taken into account 
explicitly by choosing trial numbers that maximize net profits, 
i.e., discounted benefits less discounted R&D costs, 
compensating for waiting longer on average with more protracted 
series strategies to tap the benefits stream.10   
 Because calculating the optimal number of trials is fraught 
with estimation uncertainties in real-world practice, Figure 7 
tests for sensitivity to a crude second-best strategy:  
conducting under any of four different series assumptions the 
number of trials per period optimal for a two-period strategy.11  
Again, the profit difference between a one-period and two-period 
strategy is substantial.  But for a larger number of periods, 
the profit sacrifice from using this second-best strategy is 
even smaller than under the assumptions of Figure 6. 
 
 Clearly, impressive profits are realized in most of the 
cases analyzed, even though there is substantial duplication of 
R&D costs.  They rise nonlinearly, needless to say, with the 
depth of the annual benefits stream.  For perspective, the 
discounted present value (at 6 percent simple end-of-year 
interest) of benefits starting in year 3 and ending in year 25 
is 273.75 (thousands of dollars) with annual benefits of 25 

                                                 
10     .  There is also a third variable.  Since costs are lower with series strategies, all else equal, 
more trials are conducted when early trials yield no successes, and as a result, at the end of the 
sequence, the cumulative probability of success is higher.  For bt = 25, the total number of trials 
in the worst case is 108 for a fully parallel strategy (T = 1), 174 for two stages, 222 for three 
stages, and 264 for four stages.  The cumulative success probabilities are correspondingly 0.662, 
0.826, 0.893, and 0.930.  A higher cumulative success probability, like lower trial costs, 
enhances net profits, which is also taken into account in the computations. 
 
11     .  For the one, three, and four-stage strategies, these are not the profit-maximizing 
strategies. 
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(thousands) per year and 547 with benefits of 50 per year.  
Thus, for the least profitable single-stage strategy summarized 
by Figure 6, net profits (after the deduction of R&D costs) are 
32 percent of maximum attainable benefits in the bt = 25 case and 
58 percent in the bt = 50 case.12 
 
 Figure 8 broadens the perspective to show net profits from 
fully parallel (single-year) R&D strategies for a broader array 
of success probabilities.  Quite plausibly, one observes much 
higher net profits from parallel paths strategies with single-
trial success probabilities greater than our initially assumed 
0.01, with commensurately smaller optimal trial numbers.  The 
profit increases as success probabilities are raised from 0.05 
to 0.20 are considerably smaller than those for increases from 
0.01 to 0.05.  At bt = 25, net profits with optimal fully 
parallel paths and a single-trial success probability of 0.20 
are 93 percent of maximum attainable benefits, calculated as in 
the previous paragraph.  One sees too that parallel paths 
strategies yield positive net profits for benefit stream depths 
considerably lower than 10 (thousand) per year, which was the 
approximate breakeven threshold with a single-trial success 
probability of only 0.01. 
 
 5.  Multiple and Diverse Payoff Cases 
 
 The analyses presented thus far have assumed consistently 
that there is uncertainty as to which research project or task 
will yield a good solution, but once a single solution is found, 
it suffices and the investigation can end.  In effect, the main 
uncertainty is scientific or technological.  But as recognized 
in generalization (6) above, a parallel paths investigation may 
yield more than one good solution.  Consumer tastes differ, and 
a particular solution may satisfy one set of consumer wants 
while others better meet other consumers' wants.  Moreover, 
there is abundant evidence that some research and development 
results, though technically successful, elicit relatively little 
consumer demand while others turn out to be "blockbusters."  The 
distribution of profits from technically successful and hence 
marketed new products and processes has been found consistently 
to be highly skew; that is, most commercialized inventions have 
low payoffs, but a few have high payoffs.  The top ten percent 
of innovations, ranked by profitability, account for from 48 to 

                                                 
12     .  Net profits as a percent of actual discounted benefits, the latter reduced by less than unit 
probabilities of ultimate success, are necessarily smaller.  See also Scherer (2010).  
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93 percent of total sample profits.13  Further investigation 
revealed that the statistical distribution of high-technology 
payoffs most commonly approximates log normality.14  That is, 
where N(0) is a random variable distributed normally with mean 
of zero and variance of 1, the distribution of profits is 
approximated by: 
 
 (1) D(P) = k X N(0), 
 
where P is the value of profits, D() is a distribution function, 
and k and X are scaling parameters. 
 
 To illustrate how parallel paths strategies cope with 
highly skew payoff distributions, we extend here a "dartboard 
experiment" published in more limited form in 2007.15  The choice 
of R&D projects is analogized to throwing darts at a dartboard, 
the cells of which are the various payoffs contingent upon 
research and marketing success.  In the experiments reported 
here, each dartboard contains 100 possible payoffs, assumed to 
be log normally distributed according to equation (1) above, 
with X= 10 and k = 1000 (e.g., dollars, multiplied by whatever 
further scaling parameter is suited to market conditions).  The 
number of parallel paths, i.e., "throws" at the dartboard, 
varied from 5 to 100 per experiment.  The payoff matrix 
coordinate "hit" on any given throw was random, with equal 
probability for any of the 100 possible coordinates.  R&D costs 
per "throw" were allowed to vary from zero to $12,000.  The 
strategies were purely parallel, that is, no allowance was made 
for series strategies in which a smaller number of throws was 
attempted in a first stage, followed by further stages if 
success goals were not attained.   
 
 Under conditions of certainty, i.e., perfect aim, the 
decision-maker would throw a single dart at each payoff matrix 
cell (i.e., dartboard locus) until every cell with a payoff 
exceeding R&D costs is struck.  Given the log normal 
distribution assumed, the average number of throws with varying 
costs per throw (i.e., R&D costs per approach) was as follows: 
 

                                                 
13     .  Scherer and Harhoff (2000).  
  
14     .  Harhoff and Scherer (2003), pp. 279-310.   
 
15     .  F. M. Scherer (2007). 
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   R&D Cost           Number of Throws 
 
   $12,000                  15 
    10,000                  17 
     8,000    19 
     6,000    22 
         4,000    29 
     2,000    39 
    0                  100 
 
Since every cell yields a positive payoff, dart-throwing with 
perfect aim continues when throws (R&D paths) are costless until 
all 100 cells of the dartboard are covered. 
 
 To achieve reasonably general results in the face of widely 
varying (skew-distributed) payoffs, 40 full experiments -- a 
value determined by computing constraints -- were carried out.  
For each experiment, a new set of 100 payoffs distributed 
according to equation (1) was generated, taking care to choose a 
different normal distribution "seed" for each iteration.  As 
expected, right-hand tail values varied widely across 
experiments.  The largest single extreme payoff value was 
$1,065,124; the minimax (i.e., the lowest maximum across 40 
experiments) was $58,010; the mean among the 40 experiments' 
maxima was $334,532.  Thus, substantial and, not surprisingly, 
still skewed variability was encountered.16  At the other 
extreme, zero payoffs were not feasible, but some of the minima 
were less than $1.00. Averaging all payoffs across all 40 
experiments, the mean single-trial payoff was $7,032. 
 
 Figure 1 summarizes the results from the 40 experiments, 
with the number of trials per experiment ranging from 5 to 100.  
The values graphed are total payoffs for a given number of 
trials, averaged across all 40 experiments, less total R&D 
costs, i.e., the assumed cost per trial times the number of 
trials.  One sees that with low R&D costs -- i.e., $4,000 per 
trial or less -- average net payoffs are maximized by extending 
the number of trials to at least 100 and presumably (given the 
value cutoff) more, i.e., attempting (given duplicates, 
unsuccessfully) to hit every cell on the dartboard.  Even in the 
extreme case of zero R&D cost, many more trials will be 

                                                 
16     .  For those who doubt that random sampling from skew distributions can generate such 
widely varying results, see the whole-pharmaceutical industry simulation in Scherer and Harhoff 
(2000. 11, pp. 562-564); and Nordhaus (1989). 
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undertaken than in the certainty (perfect aim) scenario.  With 
R&D costs of $6,000 or more per trial, the extreme variability 
of tail observations leads to somewhat erratic results.  
Evidently, the trials were on average particularly lucky within 
the 20-trial set; with both high and low R&D costs, a local 
maximum is found.  With R&D costs of $6,000, there are two local 
maxima -- one with 20 trials and an average net payoff of 
$120,650, and a maximum maximorum at 50 trials (many more than 
in the certainty case) and an average net payoff of $149,829 
after deduction of $300,000 total R&D cost per experiment.17  
With still higher R&D costs, the 20-trial strategy dominates, 
e.g., at R&D costs of $8,000 per trial, with mean net payoffs of 
$80,650 for 20 trials compared to $62,979 for 40 trials.18  Given 
the great variability of payoffs stemming from the log normal 
distribution, the most one can say with confidence is that when 
R&D costs per trial are such that the average net payoff across 
all trials begins to approach break-even, the strategy 
maximizing the expected value of net payoffs lies somewhere 
between 15 and 40 trials.  At the lower extreme of this range, 
the parallel paths count differs less than the number of trials 
with perfect aim.   
 
 In every experiment, additional "hits" on the same payoff 
cell were tallied as adding no incremental value, reflecting the 
real-world case when, say, two virtually identical products are 
launched into the same product characteristics space niche, with 
each product sharing in the payoff realizable within that 
niche.19  In experiments with 100 trials, the average number of 
duplicated "hits" was on the order of 36, and even with only 
five trials, occasional double hits were recorded.  That some 
payoff cells are not exploited explains why the optimal number 
of trials exceeds 100 with low R&D costs per trial:  one keeps 
trying in the hope of hitting untapped payoffs.   
 
 A key assumption in all experiments is that the each 

                                                 
17     .  In the earlier (Scherer 2007) dartboard experiment with identical distribution parameters, 
local maxima appeared with 25 trials.  Such variability is common with highly skew 
distributions. 
 
18     .  Given the high variability with the highly skew log normal distribution, one cannot rule 
out a near-zero surplus of payoffs over R&D costs with less lucky trials. 
 
19     .  In roughly one case out of 200, zero cell-locater values were also possible.  They were 
treated as if the dart thrower missed the dartboard altogether. 

 
16



 

trial's "hit" location was statistically independent of other 
trials.  This assumption could be violated in the real world 
when the targeting of individual trials is positively 
correlated, e.g., when a single organization launches multiple 
parallel trials but favors certain broad technical approaches 
over others.  If the number of multiple "hits" is increased for 
this reason, average payoffs (less R&D costs) will be reduced 
for a given number of trials. 
 
 6.  Conclusion 
 
 That uncertainty is an important feature of research and 
development is a truism.  The uncertainties are of two main 
types:  technological, i.e., whether a particular approach 
"works," and demand-driven, i.e., how consumers respond to the 
technical solutions achieved.  For both kinds of uncertainties, 
parallel paths strategies are a significant coping approach.  
They may be adopted by a single firm or government agency 
seeking to meet a market need with new technology, or by the 
market, i.e., when numerous firms more or less simultaneously 
pursue their own approaches to meeting a perceived market need.  
In either case, the analyses above yield some strong clues as to 
effective strategies.  Most importantly, the higher the value of 
individual successes for a given quantum of uncertainty and cost 
per trial, the more parallel paths should be pursued.20  And the 
greater the uncertainty for a given solution value -- i.e., the 
lower the probability of single-trial success or the more skew 
the distribution of market value outcomes -- the more parallel 
paths one should optimally pursue.  The experiments reported in 
this paper suggest that pure parallel paths strategies are not 
always optimal in their own right, especially when expected 
payoffs contingent upon success are modest.  Then some 
combination of parallel and series strategies is likely to be 
warranted, especially when researchers can learn from their 
failures and when some approaches are considered more likely ex 
ante to succeed than others.  The quantitative experiments 
reported in this paper do not yield specific solutions for 
individual R&D decision-making situations.  However, they point 
to the kinds of strategy options R&D managers should evaluate as 
they pursue their important work. 

                                                 
20     .  When social benefits exceed the private benefits appropriable by innovators, as is 
commonly the case, a larger number of parallel paths is socially optimal than is profit-
maximizing for individual market participants, although competition to be a first mover may 
drive the two closer.  See Scherer (2010). 
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